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Introduction 

• Data mining refers loosely to the process of semi 
automatically analyzing large data  bases to find useful 
patterns  Data ware house is a repository of information 
gathered from multiple sources , stored under a unified 
schema , at a single site  



Applications 

• Multimedia Data Mining 

• Mining Raster Databases 

• Mining Associations in Multimedia Data 

• Audio and Video Data Mining 

• Text Mining 

• Mining the World Wide Web 

 



Scope of research 

• In data mining we can design Data Mining Models. 

• Can develop data mining algorithms. 

• Add privacy and security features in data mining. 

• Scaling up for high dimensional data and high speed data 
streams. 

 



Data Analysis and Mining  

• Decision  Support Systems 

• Data Analysis and OLAP 

• Data Warehousing  

• Data Mining  
 



Decision Support Systems 

 Decision-support systems are used to make business 
decisions, often based on data collected by on-line 
transaction-processing systems. 

 Examples of business decisions: 

◦ What items to stock? 

◦ What insurance premium to change? 

◦ To whom to send advertisements? 

 Examples of data used for making decisions 

◦  Retail sales transaction details 

◦  Customer profiles (income, age, gender, etc.) 



Decision-Support Systems: Overview 
• Data analysis tasks are simplified by specialized tools and SQL extensions 

• Example tasks 

• For each product category and each region, what were the total sales in 
the last quarter and how do they compare with the same quarter last 
year 

• As above, for each product category and each customer category 

• Statistical analysis packages (e.g., : S++) can be interfaced with databases 

• Statistical analysis is a large field, but not covered here 

• Data mining  seeks to discover knowledge automatically in the form of statistical 
rules and patterns from large databases. 

• A data warehouse archives information gathered from multiple sources, and 
stores it under a unified schema,  at a single site. 

• Important for large businesses that generate data from multiple divisions, 
possibly at multiple sites 

• Data may also be purchased externally 



Data Analysis and OLAP 
• Online Analytical Processing (OLAP) 

• Interactive analysis of data, allowing data to be summarized and viewed 
in different ways in an online fashion (with negligible delay) 

• Data that can be modeled as dimension attributes and measure attributes 
are called multidimensional data. 

• Measure attributes  

• measure some value 

• can be aggregated upon 

• e.g. the attribute number of the sales relation 

• Dimension attributes 

• define the dimensions on which measure attributes (or aggregates 
thereof) are viewed 

• e.g. the attributes item_name, color, and size of the sales relation 



Cross Tabulation of sales by item-
name and color 

• The table above is an example of a cross-tabulation (cross-tab), also referred to as 
a pivot-table. 

• Values for one of the dimension attributes form the row headers 

• Values for another dimension attribute form the column headers 

• Other dimension attributes are listed on top 

• Values in individual cells are (aggregates of) the values of the  
dimension attributes that specify the cell. 



Relational Representation of Cross-
tabs 

 Cross-tabs can be represented 
as relations 

 We use the value all is used to 
represent aggregates 

 The SQL:1999 standard 
actually uses null values in 
place of all despite confusion 
with regular null values 



Data Cube 

 

 A data cube is a multidimensional generalization of a cross-tab 

 Can have n  dimensions; we show 3 below  

 Cross-tabs can be used as views on a data cube 



Online Analytical Processing 
• Pivoting: changing the dimensions used in a cross-tab is 

called  

• Slicing: creating a cross-tab for fixed values only 

• Sometimes called dicing, particularly when values for 
multiple dimensions are fixed. 

• Rollup: moving from finer-granularity data to a coarser 
granularity  

• Drill down: The opposite operation -  that of moving from 
coarser-granularity data to finer-granularity data 
 



Hierarchies on Dimensions 
 Hierarchy on dimension attributes: lets dimensions to be viewed 

at different levels of detail 

 E.g. the dimension DateTime can be used to aggregate by hour of 

day, date, day of week, month, quarter or year 



Cross Tabulation With Hierarchy 

 Cross-tabs can be easily extended to deal with hierarchies 

 Can drill down or roll up on a hierarchy 



OLAP Implementation 
• The earliest OLAP systems used multidimensional arrays in memory to store 

data cubes, and are referred to as multidimensional OLAP (MOLAP) systems. 

• OLAP implementations using only relational database features are called 
relational OLAP (ROLAP) systems 

• Hybrid systems, which store some summaries in memory and store the base 
data and other summaries in a relational database, are called hybrid OLAP 
(HOLAP) systems. 

 

 



OLAP Implementation (Cont.) 
• Early OLAP systems precomputed all possible aggregates in order to provide 

online response 

• Space and time requirements for doing so can be very high 

• 2n combinations of group by 

• It suffices to precompute some aggregates, and compute others on demand 
from one of the precomputed aggregates 

• Can compute aggregate on (item-name, color) from an aggregate on (item-
name, color, size)  

• For all but a few “non-decomposable” aggregates such as median 

• is cheaper than computing it from scratch  

• Several optimizations available for computing multiple aggregates 

• Can compute aggregate on (item-name, color) from an aggregate on  
(item-name, color, size) 

• Can compute aggregates on (item-name, color, size),  
(item-name, color) and (item-name) using a single sorting  
of the base data 



Extended Aggregation in SQL:1999 
• The cube operation computes union of group by’s on every subset of the specified 

attributes 

• E.g. consider the query 

  select item-name, color, size, sum(number) 
 from sales 
 group by cube(item-name, color, size) 

      This computes the union of eight different groupings of the sales relation: 

    { (item-name, color, size), (item-name, color),  
     (item-name, size),           (color, size),  
     (item-name),                   (color),  
     (size),                              ( ) } 

      where ( ) denotes an empty group by list. 

• For each grouping, the result contains the null value  
for attributes not present in the grouping.  



Extended Aggregation (Cont.) 
• Relational representation of cross-tab that we saw earlier, but with null in place of 

all, can be computed by 
  select item-name, color, sum(number) 

 from sales 
 group by cube(item-name, color) 

• The function grouping() can be applied on an attribute 
• Returns 1 if the value is a null value representing all, and returns 0 in all other 

cases.  
 select item-name, color, size, sum(number), 

 grouping(item-name) as item-name-flag, 
 grouping(color) as color-flag, 
 grouping(size) as size-flag, 
from sales 
group by cube(item-name, color, size) 

• Can use the function decode() in the select clause to replace  
such nulls by a value such as all 

• E.g. replace item-name  in first query by  
   decode( grouping(item-name), 1, ‘all’, item-name) 

 



Extended Aggregation (Cont.) 
• The rollup construct generates union on every prefix of specified list of 

attributes  

• E.g.  

  select item-name, color, size, sum(number) 
 from sales 
 group by rollup(item-name, color, size) 

Generates union of four groupings: 

        { (item-name, color, size), (item-name, color), (item-name), ( ) } 

• Rollup can be used to generate aggregates at multiple levels of a 
hierarchy. 

• E.g., suppose table itemcategory(item-name, category) gives the category of 
each item. Then   

            select category, item-name, sum(number) 
           from sales, itemcategory 
           where sales.item-name = itemcategory.item-name 
           group by rollup(category, item-name) 

 would give a hierarchical summary by item-name and by category. 



Ranking 
• Ranking is done in conjunction with an order by specification.  

• Given a relation student-marks(student-id, marks) find the rank of each student. 

 select student-id, rank( ) over (order by marks desc) as s-rank 
from student-marks 

• An extra order by clause is needed to get them in sorted order 

 select student-id, rank ( ) over (order by marks desc) as s-rank 
from student-marks  
order by s-rank 

• Ranking may leave gaps: e.g. if 2 students have the same top mark, both have rank 
1, and the next rank is 3 

• dense_rank does not leave gaps, so next dense rank would be 2 

 



Ranking (Cont.) 
• Ranking can be done within partition of the data. 

• “Find the rank of students within each section.” 

 select student-id, section, 
 rank ( ) over (partition by section order by marks desc)  
            as sec-rank 
from student-marks, student-section 
where student-marks.student-id = student-section.student-id 
order by section, sec-rank 

• Multiple rank clauses can occur in a single select clause 

• Ranking is done after applying group by clause/aggregation 

 



Ranking (Cont.) 

• Other ranking functions:   

• percent_rank (within partition, if partitioning is done) 

• cume_dist (cumulative distribution) 

•  fraction of tuples with preceding values 

• row_number (non-deterministic in presence of duplicates) 

• SQL:1999 permits the user to specify nulls first or nulls last 

     select student-id,  
            rank ( ) over (order by marks desc nulls last) as s-rank 
from student-marks 



Ranking (Cont.) 
• For a given constant n, the ranking the function ntile(n) takes the tuples in 

each partition in the specified order, and divides them into n buckets with 
equal numbers of tuples. 

• E.g.: 

 select threetile, sum(salary) 
from ( 
 select salary, ntile(3) over (order by salary) as threetile 
 from employee) as s 
group by threetile 


