

Data Warehousing

Introduction

• Data mining refers loosely to the process of semi
automatically analyzing large data bases to find useful
patterns Data ware house is a repository of information
gathered from multiple sources , stored under a unified
schema , at a single site

Applications

• Multimedia Data Mining

• Mining Raster Databases

• Mining Associations in Multimedia Data

• Audio and Video Data Mining

• Text Mining

• Mining the World Wide Web

Scope of research

• In data mining we can design Data Mining Models.

• Can develop data mining algorithms.

• Add privacy and security features in data mining.

• Scaling up for high dimensional data and high speed data
streams.

Data Analysis and Mining

• Decision Support Systems

• Data Analysis and OLAP

• Data Warehousing

• Data Mining

Decision Support Systems

 Decision-support systems are used to make business
decisions, often based on data collected by on-line
transaction-processing systems.

 Examples of business decisions:

◦ What items to stock?

◦ What insurance premium to change?

◦ To whom to send advertisements?

 Examples of data used for making decisions

◦ Retail sales transaction details

◦ Customer profiles (income, age, gender, etc.)

Decision-Support Systems: Overview
• Data analysis tasks are simplified by specialized tools and SQL extensions

• Example tasks

• For each product category and each region, what were the total sales in
the last quarter and how do they compare with the same quarter last
year

• As above, for each product category and each customer category

• Statistical analysis packages (e.g., : S++) can be interfaced with databases

• Statistical analysis is a large field, but not covered here

• Data mining seeks to discover knowledge automatically in the form of statistical
rules and patterns from large databases.

• A data warehouse archives information gathered from multiple sources, and
stores it under a unified schema, at a single site.

• Important for large businesses that generate data from multiple divisions,
possibly at multiple sites

• Data may also be purchased externally

Data Analysis and OLAP
• Online Analytical Processing (OLAP)

• Interactive analysis of data, allowing data to be summarized and viewed
in different ways in an online fashion (with negligible delay)

• Data that can be modeled as dimension attributes and measure attributes
are called multidimensional data.

• Measure attributes

• measure some value

• can be aggregated upon

• e.g. the attribute number of the sales relation

• Dimension attributes

• define the dimensions on which measure attributes (or aggregates
thereof) are viewed

• e.g. the attributes item_name, color, and size of the sales relation

Cross Tabulation of sales by item-
name and color

• The table above is an example of a cross-tabulation (cross-tab), also referred to as
a pivot-table.

• Values for one of the dimension attributes form the row headers

• Values for another dimension attribute form the column headers

• Other dimension attributes are listed on top

• Values in individual cells are (aggregates of) the values of the
dimension attributes that specify the cell.

Relational Representation of Cross-
tabs

 Cross-tabs can be represented
as relations

 We use the value all is used to
represent aggregates

 The SQL:1999 standard
actually uses null values in
place of all despite confusion
with regular null values

Data Cube

 A data cube is a multidimensional generalization of a cross-tab

 Can have n dimensions; we show 3 below

 Cross-tabs can be used as views on a data cube

Online Analytical Processing
• Pivoting: changing the dimensions used in a cross-tab is

called

• Slicing: creating a cross-tab for fixed values only

• Sometimes called dicing, particularly when values for
multiple dimensions are fixed.

• Rollup: moving from finer-granularity data to a coarser
granularity

• Drill down: The opposite operation - that of moving from
coarser-granularity data to finer-granularity data

Hierarchies on Dimensions
 Hierarchy on dimension attributes: lets dimensions to be viewed

at different levels of detail

 E.g. the dimension DateTime can be used to aggregate by hour of

day, date, day of week, month, quarter or year

Cross Tabulation With Hierarchy

 Cross-tabs can be easily extended to deal with hierarchies

 Can drill down or roll up on a hierarchy

OLAP Implementation
• The earliest OLAP systems used multidimensional arrays in memory to store

data cubes, and are referred to as multidimensional OLAP (MOLAP) systems.

• OLAP implementations using only relational database features are called
relational OLAP (ROLAP) systems

• Hybrid systems, which store some summaries in memory and store the base
data and other summaries in a relational database, are called hybrid OLAP
(HOLAP) systems.

OLAP Implementation (Cont.)
• Early OLAP systems precomputed all possible aggregates in order to provide

online response

• Space and time requirements for doing so can be very high

• 2n combinations of group by

• It suffices to precompute some aggregates, and compute others on demand
from one of the precomputed aggregates

• Can compute aggregate on (item-name, color) from an aggregate on (item-
name, color, size)

• For all but a few “non-decomposable” aggregates such as median

• is cheaper than computing it from scratch

• Several optimizations available for computing multiple aggregates

• Can compute aggregate on (item-name, color) from an aggregate on
(item-name, color, size)

• Can compute aggregates on (item-name, color, size),
(item-name, color) and (item-name) using a single sorting
of the base data

Extended Aggregation in SQL:1999
• The cube operation computes union of group by’s on every subset of the specified

attributes

• E.g. consider the query

 select item-name, color, size, sum(number)
 from sales
 group by cube(item-name, color, size)

 This computes the union of eight different groupings of the sales relation:

 { (item-name, color, size), (item-name, color),
 (item-name, size), (color, size),
 (item-name), (color),
 (size), () }

 where () denotes an empty group by list.

• For each grouping, the result contains the null value
for attributes not present in the grouping.

Extended Aggregation (Cont.)
• Relational representation of cross-tab that we saw earlier, but with null in place of

all, can be computed by
 select item-name, color, sum(number)

 from sales
 group by cube(item-name, color)

• The function grouping() can be applied on an attribute
• Returns 1 if the value is a null value representing all, and returns 0 in all other

cases.
 select item-name, color, size, sum(number),

 grouping(item-name) as item-name-flag,
 grouping(color) as color-flag,
 grouping(size) as size-flag,
from sales
group by cube(item-name, color, size)

• Can use the function decode() in the select clause to replace
such nulls by a value such as all

• E.g. replace item-name in first query by
 decode(grouping(item-name), 1, ‘all’, item-name)

Extended Aggregation (Cont.)
• The rollup construct generates union on every prefix of specified list of

attributes

• E.g.

 select item-name, color, size, sum(number)
 from sales
 group by rollup(item-name, color, size)

Generates union of four groupings:

 { (item-name, color, size), (item-name, color), (item-name), () }

• Rollup can be used to generate aggregates at multiple levels of a
hierarchy.

• E.g., suppose table itemcategory(item-name, category) gives the category of
each item. Then

 select category, item-name, sum(number)
 from sales, itemcategory
 where sales.item-name = itemcategory.item-name
 group by rollup(category, item-name)

 would give a hierarchical summary by item-name and by category.

Ranking
• Ranking is done in conjunction with an order by specification.

• Given a relation student-marks(student-id, marks) find the rank of each student.

 select student-id, rank() over (order by marks desc) as s-rank
from student-marks

• An extra order by clause is needed to get them in sorted order

 select student-id, rank () over (order by marks desc) as s-rank
from student-marks
order by s-rank

• Ranking may leave gaps: e.g. if 2 students have the same top mark, both have rank
1, and the next rank is 3

• dense_rank does not leave gaps, so next dense rank would be 2

Ranking (Cont.)
• Ranking can be done within partition of the data.

• “Find the rank of students within each section.”

 select student-id, section,
 rank () over (partition by section order by marks desc)
 as sec-rank
from student-marks, student-section
where student-marks.student-id = student-section.student-id
order by section, sec-rank

• Multiple rank clauses can occur in a single select clause

• Ranking is done after applying group by clause/aggregation

Ranking (Cont.)

• Other ranking functions:

• percent_rank (within partition, if partitioning is done)

• cume_dist (cumulative distribution)

• fraction of tuples with preceding values

• row_number (non-deterministic in presence of duplicates)

• SQL:1999 permits the user to specify nulls first or nulls last

 select student-id,
 rank () over (order by marks desc nulls last) as s-rank
from student-marks

Ranking (Cont.)
• For a given constant n, the ranking the function ntile(n) takes the tuples in

each partition in the specified order, and divides them into n buckets with
equal numbers of tuples.

• E.g.:

 select threetile, sum(salary)
from (
 select salary, ntile(3) over (order by salary) as threetile
 from employee) as s
group by threetile

